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An approximate procedure to enhance the accuracy of the continuous stress fieh:l in local 

regions has been proposed, based on koubignac's iterative method and the theory of conjugate 

approximations. The validity of the proposed method has been tested through three examples: 

a thick-walled cylinder under internal pressure; an infinite plate with a central circular hole 

subjected to uniaxial tension; and a short cantilever beam. Analysis of the examples shows that 

the stress field obtained for the local region model by the proposed method agrees well with that 

for the whole domain model. In addition, a significant reduction in computing time to obtain 

the improved stress field implies that the proposed method can be an efficient alternatiwz for the 

detailed stress analysis in local regions. 
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1. Introduction 

After more than three decades of study and 

development, the displacement-based finite ele- 

ment method has come to be an effective and 

widely used tool for numerical analysis in the 

engineering field because it has following advan- 

tages: a simple theory based on the principle of 

minimizing the total potential energy and a good 

convergence of the solution. Conventional dis 

placement-based finite elements maintain only C O 

continuity over the problem domain(Strang and 

Fix, 1973). In many applications, the quantities 

of primary interest are not the primary variables, 

such as displacement and temperature, but rather 

functions of the derivatives of the primary vari- 

ables, such as stress and strain, and flux. Since 

these derivatives do not possess inter-element 

continuity, a number of post-processing tech- 

niques have been developed over the years to 

interpret these discontinuous fields. 

Various methods to overcome these disadvan- 
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tages have been developed. First, mixed formula- 

tions in which the stresses and stratus are inter- 

preted independently of the displacements have 

been used with success in the context of fluid 

mechanics and visco-elastic flows. However, 

mixed solution methods have not achieved wide- 

spread popularity owing to the large number of 

solution parameters involved. Second, the projec- 

tion method, i. e., the theory of conjugate approxi- 

mations which yields a smooth stress field has 

been proposed and developed by some researchers 

(Hinton and Campbell, 1974; Brauchli and Oden, 

1971). Even though the stress fieh:t from the 

projection method over the whole domain, such 

as a global kz-projection (i. e., leasl square error 

method) are continuous over the whole domain, 

this method requires too much computing time. 

Therefore, a commercial code, such as ANSYS, 

employs local Lz projection over each element 

and averages the nodal stresses at common nodes 

to get an improved stress field. Third, Loubignac, 

Cantin, and Touzot(1977) have proposed an 

iterative method that improves the accuracy of 

both stresses and displacements in finite element 

stress analysis. Then, this method requires too 
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much computa t ion  to get an improved stress field 

and displacement field. In addit ion,  Zienkiewicz,  

Li, and Nakazawa(1985)  proved that the combin-  

ing of  the iterative method with the projection 

method was consequent ly identical to the mixed 

formulat ion when full convergence was reached. 

However,  the objective of  the above methods is to 

get an improved stress field rather over the entire 

structure. 

In many practical cases, it is necessary to model  

a small port ion of  the structure, such as a stress 

critical component ,  in greater detail. The first 

approach to this end is to model the entire struc- 

ture with a fine mesh. However,  this is 

computa t iona l ly  expensive because large number 

of  equat ions must be solved. The second 

approach is to transit from a refined mesh in the 

area of  interest to coarse mesh in the rest of  the 

structure using either t r iangular  elements or spe- 

cially Formulated transition elements. The user 

may encounter  problems generat ing this type of  

mesh, especially if a mesh generation preprocessor 

is being used. The third approach is to solve the 

problem by subregion modell ing,  such as the 

specified displacement method in A N S Y S  or the 

zooming  method etc. As the stresses by these 

subregion model l ing  are also based on the con- 

ventional  d isplacement-based finite element anal- 

ysis, inter element discontinuit ies in the stresses 

st i l l  remain. 

In this study, an efficient method to build an 

improved and cont inuous  stress field without 

further refining the grid in local regions is 

proposed,  based on the theory of  conjugate 

approximat ions  and Loubignac 's  iterative algor- 

ithm. To check the validity of  the proposed 

method, stress analysis on three examples has 

been carried out. 

2. Displacement-based Finite Element 
Formulation 

In the convent ional  displacement based finite 

element  method, after a grid is generated over the 

entire domain,  a cont inuous  displacement distri- 

bution needs to be assumed for every element 

(Bathe, 1982). For  each element, the displace- 

ment field {zt} ~' where superscript e denotes the 

element,  is generally assumed to be: 

{ z r  �9 {,OV (l)  

where [N]  is the shape function matrix of  the 

element and {,d} e is the displacement vector of  the 

element. 

The strain vector {e} ~ can be derived as :  

{ e V =  [I, ']  �9 {u} ~ (2) 

where [/3] is the element strata matrix. 

The  stress vector {a} ~' can be derived a s :  

{d} ~ [D]  �9 {e} e [D] �9 [B]  �9 {u} e (3) 

where [D] is the consti tutive matrix of  the 

material.  

The virtual work principle for an element is 

expressed as: 

s ~{a} {FV (4) B] e ( Z Q  e 

where ,Q~ is the domain  of  the element, and {F} ~ 

is the nodal  force vector of  the element. 

Substi tuting Eq. (3) into Eq. (4), we have 

[ K ] e = s  [B] r" [ D ] "  [B]cL(2,~ (6) 

is the stiffness matrix of  the element. 

3. Conjugate Approximation 

Brauchli and Oden(1971) proposed the theory 

of  conjugate approximat ions  and applied the 

theory for cont inuous  stress field representation 

in the conforming finite element model. To  be 

briel, the conjt ,gate stress idea is summarized as 

follows: 

1) Consider  a finite element model of  an elastic 

body which consists of  a collection of  F elements 

connected together at G nodes, and suppose that 

the finite element model  of  the displacement 

c o m p o n e n t s ( u , ( x ) )  is of  the form 

ui . ?  r  (.x:) (7) 

where the repeated index A is summed from I to 

G. 
Here a;" are the components  of  displacement at 

node A ,  [ = 1 ,  2, 3, zX 1, 2, .-., (7 and ~A(x)  

are interpolat ion functions which have the prop- 

erties @= (X r) c~ r :~ ; ~/~, F --1, ~ G. 
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2) From the constilutive equations, the conven- 

tional stress tensor(a  u) is obtained from finite 

element analysis. 

~':~:: E'v'~*'u,; ~ ..... (x) (8) 

where ,g*.s,,,~ is the elasticity tensor and q) :,.,, (.v ) " 

c).v,, ' "~'' being the material(Cartesian) co-or-  

dinates of x. 

3) Conjugate stresses, <b~*~", and the consisienl 

nodal average "'J S:,, are defined as follows: 

<7"~ < a ' ' ,  ~. . : (x)>:=~cs"q)~,Cr)d22 (9) , A 

S'>" = < er u, gl<, (x) > s ':' (x) U,Q (10) 

The conjugated approximation functions. ~ : ' (x )  

are given by 

~<' (.v) C" ~,. Cr) ( I  I) 

Here C Ar is the inverse of the matrix C.,,s., 

defined as follows: 

C, ~A__ ,,.i .... r'~ - ,5:, (12) 

where C.,,r is the fundamental matrix defined as 

the inner product of the shape functions over the 

whole domain. 

@r(x)'~ f~ , - ( .v )  �9 q),.(x)dS2 C,, , .=,~ ~,~ ( x ) ,  

(13)  

The major difficulty encountered in applying 

the theory of consistent stress approximations 

concerns the matrix C:,r  of Eq. (12). 

4. Stress Improvement in the 
Local Region 

Figure 1 represents the whole domain, which 

consists of the local region, the outer region, and  

Fig. I Illustration ofthe whole domain andlhelocal  
region. 

the interface. The finite element equation f b r  the 

whole domain can be expressed as follows, where 

the subscripts 1, 2, and 3 represerit the Local 

region, the interfitce, and the outer region, respec- 

tively. 

[ 1~-'11 tkl2 0 1/111~ /S l \  
1<~, A'~=, "<~:</ / ' " ) ' / / :~!  (14) 
0 1~7'2 1"1"3'4 J l \ ' ' ' l ' ( ' 3  I \/~3 / 

Discarding the third equation in Eq. (14), the 

finite elemem equation, irlvolving only the local 

region and interface, expressed as subscript L, is 

as follows: 

where, 

i Ix' ~ ~ tn = 1 )  ( 1 5) 

Ll{.e~ [q~:3" us:=' , l~2/ 

I) :(J~ j] u:)  
" " K~:, , 

Jara Almonte and Knight(1988) showed that 

by refining tile mesh in only the local region and 

solving Eq. (15), an impro,,ed firiite element 

solution could be obtained in the local region. 

However, in this sttidy, a method to improve the 

finite element solution in the local regiori has 

been proposed by combining the lheory of conju- 

gate approximations and I.oubignac's iterative 

melhod wifllout further refirling the grid in the 

local region (Song, 1997). Applying the conjugate 

approximation to the whole domain, as in Fig. 1, 

Eq. (12) can be expressed as Ibllows: 

Cll Ci~ , ' h i  

C.'~i C= "'* 
0 C= C.. <5 ':~ <% 

where N represenis the conjugate stress, S ':~r 

defined in Eq. (10) and N< represents the consis- 

tent nodal average, N.{/ defined in Eq. (9). 

Discarding the third equation in Eq. (16), and 

supposing that the conventional nodal stress aver- 

ages ((TJ in the outer region can replace the conju- 

gate stresses(Sa), Eq. (16) can be approximately 

reduced as lbllows: 

[C,, C,~] ,b" 
~--'21 C7,2 j (S'2):::: ( ~  ,"2 'l~(~'v'~l,Y3) " ( 1,2 _ C2,,(~3)<"l 

(17) 
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Using Eq. (15) and Eq. (17), an improved 

stress field which is continuous can be obtained 

iteratively as follows: 

i) Solve Eq. (15) to obtain uL 

ii) Calculate the conventional stress field o'L= 

[D] �9 [B] u~ 

iii) Solve Eq. (17) to obtain the conjugate 

stress S ~ 

iv) Interpolate the continuous stress field using 

S i and the shape function N* 

a * = N , * S  i (18) 

v) Compute the nodal force vector that corre- 

sponds to the continuous stress field, d* 

f * :  ~' re= e~me i E2r~]To'*d"(~e elemen~ el at e 

The Lz-norm of force imbalance, ]lAfl]~ and 

the ratio of the L~ norm of force imbalance, R~, 
at the i-th iteration are defined as follows: 

llA fll~= i ( f  _ f , )  r . ( f  _ f , )  dO 

II~/l[, 

II~-~//10 
vi) Solve A u [ - - K c t ( f L - - f * )  (21) 

vii) Update ztL and oL 

uL +L = zd_+ A u{ (22) 
~{+t= [D] �9 [B] u]~ +~ (23) 

viii) Go to step iii) unless Ilzxu~ll is less than a 
predefined value. 

The total strain energy (U, ou, z) expression from 

the continuous stress field is obtained as: 

U 1 /" , r . ~ , d 2 2  _l_.fo.,r " D ~ ,o.,,=-~-]j 
�9 a*df2 

5. Determinat ion of the Locat ion and 
Size  of the Local Regions 

For a given element i, the local strain energy 

density, denoted by LSEDI is defined as: 

L S E D , -  ~ 
A i  

where Ui and Ai  are the strain energy and the 

area(or volume) in an element i, which are from 

the conventional finite element solution, respec- 

tively. 

Similarly, for the whole domain, the global 

strain energy density, GSED is defined as: 

Total strain energy of the system 
GSED -- 

Total volume(or area) of the system 

Many a researcher(Febres Cedillo and Bhatti, 

1988; Botkin and Bennet, 1986; Lee and Lo, 1988) 

has proposed the strain energy density as an 

indicator for looking for the location of high 

-stress concentration or singularities, in this 

study, the strain energy density index (SEDI:fli) 

for each element is used to discern the location 

and the size of the local region model. 

LSEDi 
~'~ GSED 

6. Numerica l  Examples  

6.1 Thick-walled cylinder 
To show that the present method is effective for 

smooth problems, a thick walled cylinder subject- 

ed to uniform internal pressure under plane strain 

conditions is considered. Due to symmetry, one 

quarter of the cylinder is taken for analysis, as 

shown in Fig. 2. Poisson's ratio(k) and Young's 

modulus(E)  are taken to be 0.3 and 1.0, respec- 

tively. The finite element model of the problem is 

shown in Fig. 2 and the shaded region in Fig. 2 

represents the local region model discerned by the 

SED1 whose value is above 1.0. Table 1 repre- 

sents the value of SEDI in each element layer 

along radius. The quadrilateral plane strain ele- 

ment has been used in the finite element model. 

The exact solut ion(Timoshenko,  1970) is 

compared with various stress solutions, which 

come from ANSYS and the present method, over 

the whole domain and the local region model. 

Figures 3 and 4 show the variation of the "ratio 

of L2 norm of force imbalance," R~, as iteration 

numbers in the whole domain and the local 

region model, respectively. Figures 3 and 4 show 

that R~ is monotonously decreasing and rapidly 

converging in a few iterations. This means that 
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Fig. 2(a) Thick-walled cylinder under internal 

Fig. 3 Ratio of L2-norm of force imbalance vs. 
number of iterations in the whole domain. 

Fig. 2(b) Finite element model of thick-walled 
cylinder. 

Fig. 4 Ratio of L2-norm of force imbalance vs. 
number of iterations in the local region. 

Table 1 SED1 in the element layer along the radial direction for the thick walled cylinder. 

Element layer from the 

inner surface 

Strain energy density 

index (~/) 

1 2 3 4 5 6 7 

2.937 1.918 1.317 0.945 0.703 0.542 0.430 0.351 

the iterative procedure could effectively improve 

the stress and displacement field, both for the 

whole domain and the local region model to meet 

the original finite element equilibrium equation. 

Figure 5 shows the comparison of the radial 

stresses(o-r) along the inner radius, which are 

computed iteratively in the local region and the 

whole domain model from the present study with 
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the exact solut ion and the convent ional  finite 

element solution ( A N S Y S  results). Three observa- 

tions are inferred from Fig. 5. First, the nodal 

stress averages from A N S Y S  are 21.53% lower 

than the exact solut ion for the finite element 

model of  Fig, 2(b) ,  whose maximum node num- 

ber is 99 and element length is h. In the refined 

finite element model whose maximum node num- 

I 
bet is 357 and element length is 2 h, the nodal 

stress averages from A N S Y S  are 11.31% lower 

than the exact solution. The  stress results from the 

present study, whether they are from the whole 

domain  model or local region model,  are at most 

3.47% lower than the exact solution. This shows 

that the present study can improve the accuracy of  

the stress figures greatly. Second, the radial stres- 

ses(oT) from the pure conjugate approximations,  

i. e., without  iteration, are not only 13.6% lower 

than the exact solution but also 2.3% lower than 

the nodal  stress averages from the refined finite 

element model.  This matches other research (Oden 

and Reddy, 1973; Brauchli and Oden, 1971) in 

that conjugate approximat ions  could improve the 

accuracy of  the stress figures. Third,  the stress 

from the local region model  is in agreement with 

that of  the whole domain  model,  except for the 

presence of  a few more oscillations, even though 

oscil lat ions are also observed in the whole 

domain  model. It seems that the addit ional  oscil- 

lations in the local region model are attributed to 

the assumption that the displacement f ield(ua) 

and stress field(o-:0 in the outer region are fixed, 

while in fact they may wtry at each iteration. In 

addit ion,  the comput ing  time of  the local region 

model is significantly reduced, compared with 

that of  the whole domain  model,  Based on the 

Cyber  960, the comput ing  time for the local 

region rnodel, whose maximum node number is 

33, is 7.076 see., while that for the whole domain  

model, whose maximum node number is 99, is 

Fig. 6(a) Infinite plate with a central circular hole 
subjected to unidirectional tension. 

Fig. 5 Variation of the radial stresses along the Fig. 6(b) Finite element model of infinite plate with 
inner radius, a central circular hole. 



An Approximate Method to Build an Improved Stress Field in Local Regions 865 

31@052 sec. until R~ reaches below O.I. 

6.2 Infinite plate with a central circular 

hole subjecled to uniaxial tensile loads 

In the second example, an infinite plate with a 

central circular hole subjected to a far-f ield ten- 

sile load, a 1.0, is considered. Due to symmetry, 

one quarter of  the cylinder is taken for analysis, 

as shown in Fig. 6(a) .  Poisson's  ratio and 

Young's  modulus  are taken to be 0.3 and 1000, 

respectively. Plane stress condi t ions  are assumed 

and boundary condi t ions  are described so that the 

symmetry condi t ions  are satisfied. The stress 

boundary cond i t ions (T imoshenko ,  1970) are 

specified along each boundary  as follow: 

Along BC and C D  

;,; . . . .  _ 2 8 s ~ 7 )~a-cos 4 0 

o9-- a21 ' 1 4 0 )  3 a ~ --  -- ,,~2~ 2 cos 20 - c o s  - -~ - -~zcos  40 

a~[ 1 . 4 0 ) +  3 a 4 . r~ . . . . . .  .ye~, ~ s m  20 4- s in  ~ -  r ~ S m  40 

a = 1.0 

Along AB and ED 

rx'y 0 

Along AE 

O'r=0 

rr0=:0 

Figure  6 (b) represents the finite element model  

with quadr i la tera l  plane stress elements, where 

the shaded region represents the local region 

model.  Figures 7 and 8 represent the var ia t ion of  

Ri  as iteration numbers for the whole domain  

model  whose maximum number  is 325 and for the 

local region model  whose maximum number  is 

125, respectively. Figures 7 and 8 show that R~ 

significantly decreases and converges in a few 

iterations. This denotes that the stress fields are 

being improved to satisfy the original  finite ele- 

ment equi l ibr ium equat ion at a little addit ional  

cost of  comput ing  time. 

Figures (9 ) - -  (11) represent the wtriation of  

at,  rr0, and o'0 along the boundary  AE,  respective- 

ly. T w o  observat ions are inferred from Figs. 9 

and 10. First, the conjugate  stresses are more 

accurate in approximat ing  the exact solut ion than 

the convent ional  finite element solution.  Second, 

the lack of  significant stress differences in the 

local region model  and whole domain  model  

implies that the present study is effective in build- 

ing an improved and cont inuous  stress field in the 

local region. Figure  II shows that there are no 

significant differences of  o'0 between from the 

convent ional  finite element method and the pres- 

Fig. 7 Ratio of L2-norm of lbrce imbalance vs. Fig. 8 Ratio of L~ norm of force imbalance vs. 
number of iterations in the whole domain, number of iterations in the subraodel. 
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Fig. 9 Variation of the radial stresses along 
the boundary AE. 

Fig. 11 Variation of the hoop stresses along 
the boundary AE. 

Fig. 10 Variation of the shear stresses along 
the boundary AE. 

ent study. 

Figure 12 shows the variation of the total strain 

energy as iteration numbers increases. The fact 

that the total strain energy is monotonously 

increasing as iteration number does and rapidly 

converging in a few iterations shows that the 

continuous stress field from this study is continu- 

ously being improved to meet the original finite 

element equilibrium equation. 

Fig. 12 Total strain energy vs. number of 
iterations in the whole domain. 

6.3 Short cantilever beam 

A short cantilever beam under plane strain 

conditions is taken as an example where there are 

singularities present. The dimensions and the 

loading and support conditions of the beam are 

shown in Fig. 13(a). Poisson's ratio and Young' 

s modulus are taken to be 0.3 and 1,0, respective- 

ly. Figures 13(b--e) show the various finite 

element models on quadilateral elements using 

bilinear basis functions. Total strain energy and 

/?i at the 5 th iteration is shown in Table 2. 
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Elastic modulus 
E=I.0 

Poisson's ratio 
v=O3 

Thickness 
t= 1.o 

Plane strain condition 

Fig. 13(b) Model 1 (12 DOF) 

Fig. 13(a) Short cantilever beam 

Fig. 13(d) Model 3 (I44 DOF) 

Fig. 13(c) Model 2 (30 DOF) 

Fig. 13(e) Model 4 (840 DOF) Fig. 13(f) Finite element model. 
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Table 2 Comparisons of strain energy and R~ for various FE models of the short cantilever beam. 

FE 
Model 
(DOF) 

12 

40 

144 

840 

Conventional FEM 

Conjugate approximation 

Present study 

Conventional FEM 

Conjugate approximation 

Present study 

Conventional FEM 

Conjugate approximation 

Present study 

Conventional GEM 

Conjugate approximation 

Present study 

Total  strain energy 

SE SE/SE ..... t 

0.69511 0.7303 

0.73866 0.7760 

0.82087 0.8624 

0.80959 0.8505 

0.85155 0.8946 

0.90771 0.9536 

0.88862 0.9336 

0.91120 0.9573 

0.93613 0.9835 

0.93340 0.9806 

0.94057 0.9881 

0.94769 0.9956 

Ri 

1.000 

0.47930 

0.674E 3 

1.000 

0.5725 

0.514E 1 

1.000 

0.5828 

0.1074 

1.000 

0.5849 

0.927E-1 

Table 3 Comparisons of maximum normal stress, 

cr~ at A for the local and whole model. 

Conventional F. E. M. 

Conjugate approximation 

Present study 

Short cantilevers beam 

Local Whole 

model model 

7.25458 7.25458 

7.89336 8.44189 

8.70953 8.74296 

Fig. 14 Ratio of L2-norm of force imbalance vs. 
iteration numbers for the short cantilever 
model. 

Table 2 shows that the total strain energy does 

indeed tend towards the exact value(Ainsworth et 

al., 1989) as the mesh is refined. Even though the 

present study employs an iterative method, the 

present method seems to be a cost effective proc- 

ess since the total strain energy rapidly converges 

to a certain greater than that of the conventional 

stress fields in a few iterations. 

The shaded region in Fig. 13(0 represents the 

local region model, which is determined from a 

conventional finite element solution over the 

whole domain model. Figure 14 shows the varia- 

tion of R, as the iteration number changes for the 

local region model and whole domain model. 

Figure 14 shows that /e,- is monotonously and 

rapidly decreasing as the iteration proceeds, 

which indicates that the stress field is improving 

to meet the original finite element equations. The 

maximum normal stress at A in Fig. 13(0 is 

represented in Table 3, which shows that the 

maximum stress fiom the local region model well 

approximates a value from the whole domain 

model. 

7. Conclusions 

Combining the theory of conjugate approxima- 

tions for the stress field and an iterative procedure 

for the improvement of the displacement field, a 
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new procedure to build an improved and continu- 

ous stress field in the local region has been 

proposed without further refining the grid. The 

proposed procedure has been applied to three test 

examples: two smooth problems and one example 

where there are singularities. Numerical test 

results show that the stress fields from the whole 

domain model and the local region model were 

both improved to meet the original finite element 

equilibrium equation and converged in a few 

iterations. In addition, numerical test results show 

that not only the stress field fiom the local region 

model is seldom different from that of the vvhote 

domain model, but also, the computing time to 

obtain the stress field ['or the local region model is 

consideraMy reduced compared with that t'or the 

whole domain model. Therel`ore, the present 

method can be used to predict an improved and 

continuous stress field, both effectively and eco- 

nomically, in the local region where detailed 

stress analysis is required. 
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